Utilisation du Lifecorder+® pour évaluer le temps d'ingestion des vaches laitières au pâturage

Use of the Lifecorder+® sensor to assess grazing time of dairy cows

ALLAIN C. (1), RAYNAL J. (1), BECK C (2), DELAGARDE R. (3), BROCARD V. (1)

- (1)Institut de l'Elevage, Le Rheu, France
- (2) Department of Farm Systems, Wageningen UR Livestock Research, Lelystad, The Netherlands
- (3) Institut National de la Recherche Agronomique, UMR1348 PEGASE, Saint-Gilles, France

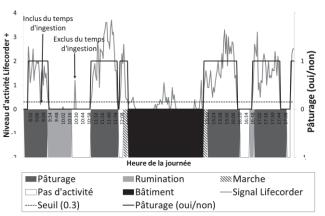
INTRODUCTION

De nombreux éleveurs souhaiteraient savoir si leurs vaches pâturent réellement lorsqu'elles sont dehors, même s'il est très difficile de relier cela à une quantité ingérée. Une première étape pour rassurer les éleveurs peut être d'évaluer leur temps de pâturage. Récemment, Ueda et al. (2011) et Delagarde et Lamberton (2015) ont montré que le Lifecorder + (LC+), un capteur utilisé pour le monitoring de la santé humaine, pouvait être utilisé pour évaluer le temps d'ingestion au pâturage. La possibilité d'utiliser des LC+ pour suivre le comportement alimentaire des vaches au pâturage a donc été testée dans 2 fermes expérimentales équipées de robot de traite, dans le projet européen AutoGrassMilk du cadre (www.autograssmilk.eu),

1. MATERIEL ET METHODES

Le LC+ (Suzuken Co. Ltd., Nagoya, Japan), est un accéléromètre uniaxial. En plus d'enregistrer le nombre de pas par minute et d'estimer la quantité d'énergie dépensée, il enregistre l'intensité de l'activité physique toutes les 4 secondes. Les données brutes sont ensuite synthétisées en indice d'activité moyen (de 0 à 9) toutes les 2 minutes. Pour évaluer la durée de pâturage de vaches laitières, les capteurs ont été montés sur des colliers et installés sur des vaches de 2 fermes expérimentales (20 vaches ont été équipées à Derval et 14 vaches à Trévarez). Les données issues des capteurs ont ensuite été converties en temps de pâturage, lorsque le niveau d'activité dépasse un seuil, par l'intermédiaire d'un outil développé sur Excel.

Les courts intervalles intra repas (<=4 min) sont inclus dans le temps de pâturage alors que les « repas » parasites (<=4 min) en sont exclus (voir figure 1, Rook et Huckle, 1995). Les données d'activité lorsque les vaches sont en bâtiment sont également exclues. Les données issues des capteurs ont été comparées à des observations visuelles. Des observateurs ont enregistré les activités des vaches au pâturage en utilisant une méthode de scanning toute les 10 minutes. 20 enregistrements étaient disponibles à Derval (121h d'observations cumulées) et 91 à Trévarez (336 h d'observations cumulées).


2. RESULTATS ET DISCUSSION

Les résultats de la comparaison (tableau 1) montrent une forte corrélation entre le temps de pâturage observé et celui estimé par l'intermédiaire des LC+. Sur la ferme expérimentale de

Derval, la meilleure corrélation a été trouvée pour un seuil d'activité de 0,3 (R²=0,93). Dans ce cas, le biais moyen était de 3 minutes (1,5% du temps de pâturage observé) et l'erreur moyenne de prédiction (EMP) était de 18 min (9%). Sur la ferme expérimentale de Trévarez, avec un seuil de 0,3, le coefficient de détermination était de 0,82, le biais moyen de 6 min (4,1%) et l'EMP de 29 min (20%). Avec l'ensemble des données, le coefficient de détermination était de 0,84, le biais moyen de de 5 min (3%) et l'EMP de 27 minutes (17%). Ces résultats confirment, avec une moindre précision, ceux obtenus par Delagarde et Lamberton (2015) avec le même capteur. Les différences de performances peuvent probablement s'expliquer par les comportements différents (notamment les déplacements) des vaches laitières entre un système avec et sans robot.

CONCLUSION

Le LC+ semble être un outil très précis, bon marché et facile à utiliser pour enregistrer le temps de pâturage des vaches laitières à des fins de recherche appliquée.

Figure 1: Exemple de conversion du signal du LC+ (ligne grise) en information de pâturage (oui/non) et comparaison par rapport aux observations (bandes colorées)

Delagarde R., Lamberton P., 2015. Ap.Anim. Behav. Sci., sous presse

Kaufmann L.D., Muenger A., Rerat M., Junghans P., Goers S., Metges C.C., Dohme F., 2009. Renc., Rech. Rum., 2009, 16.
Rook A.J., Huckle C.A., 1995.An. Zoot. 44 Suppl, 105-105.

Ueda Y., Akiyama F., Asakuma S., Watanabe N., 2011. J. Dairy Sci., 94 :3498–3503.

Tableau 1 : Résultats de la comparaison entre le temps de pâturage observé et mesuré (LC+)

	_		Temps de pâturage		Biais moyen ^a (min)	R² b	EMP°	
	d'obs.	détection	obs. (min)	LC+ (min)			min	% obs
Derval	20	0,3	196	199	3	0,93	18	9
		0,5		188	-8	0,84	27	14
Trévarez	91	0,3	147	153	6	0,82	29	20
Toutes données	111	0,3	156	161	5	0,84	27	17

^a biais moyen = observé – LC+, ^b R² : coefficient de détermination, ^c EMP : erreur moyenne de prédiction